

Characterizing Targeted Cancer Therapeutics The Comprehensive Gene Fusion Database

Evidence-Based Gene Fusion Landscape

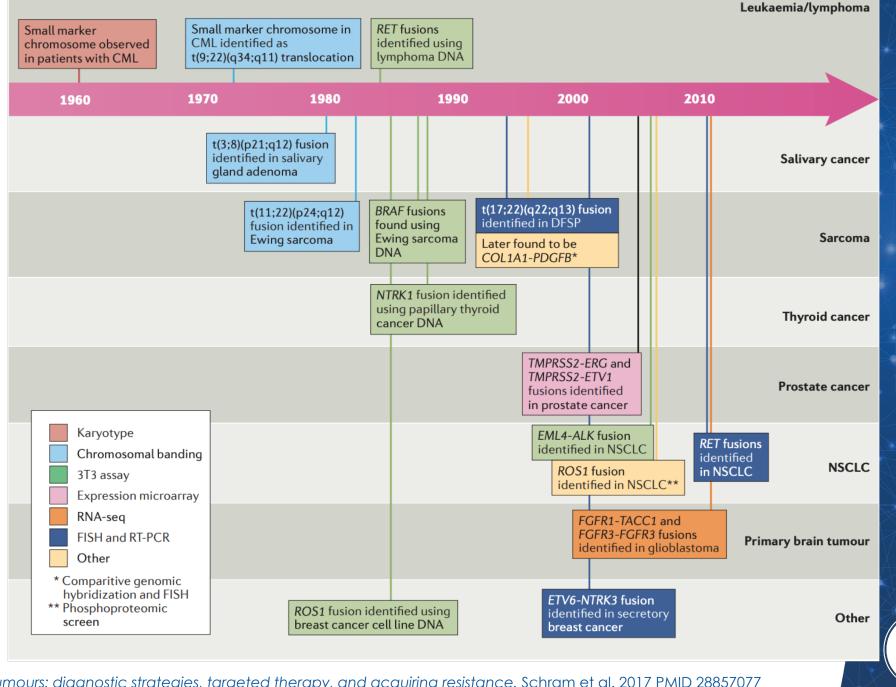
Mark Kiel, MD PhD

Founder and Chief Science Officer, Genomenon Molecular Genetic Pathology, University of Michigan Weintraub International Graduate Student Award ProQuest Distinguished Dissertation Award Benjamin Castleman Award

Outline

GENE FUSION DATABASE WITH MASTERMIND

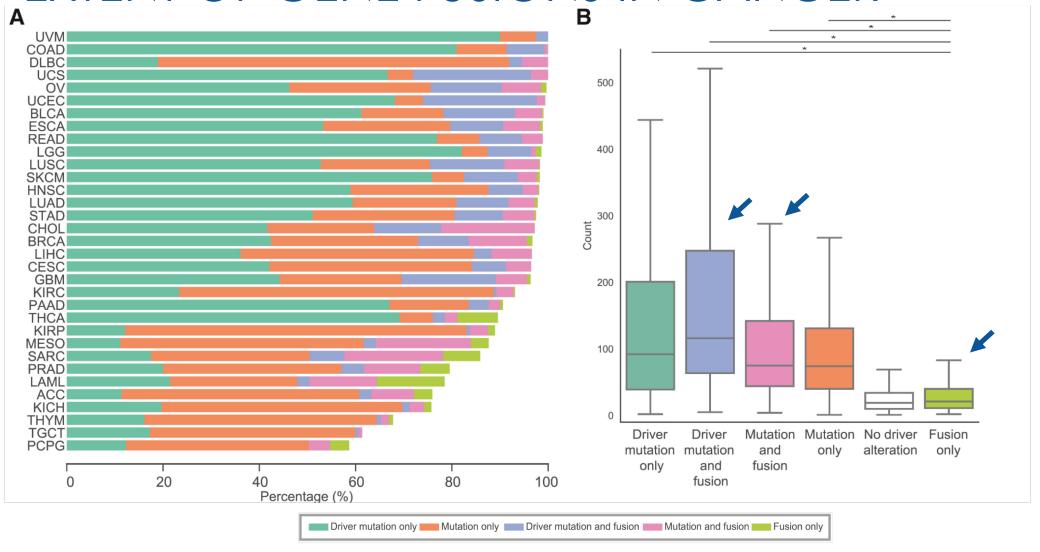
- Background Fusions
- Gene Fusion Database
 - Summary Data
 - Example Data
 - Use Cases
- Summary
- Questions



Sign Up for Mastermind Basic Edition and get 14 days of Mastermind Pro

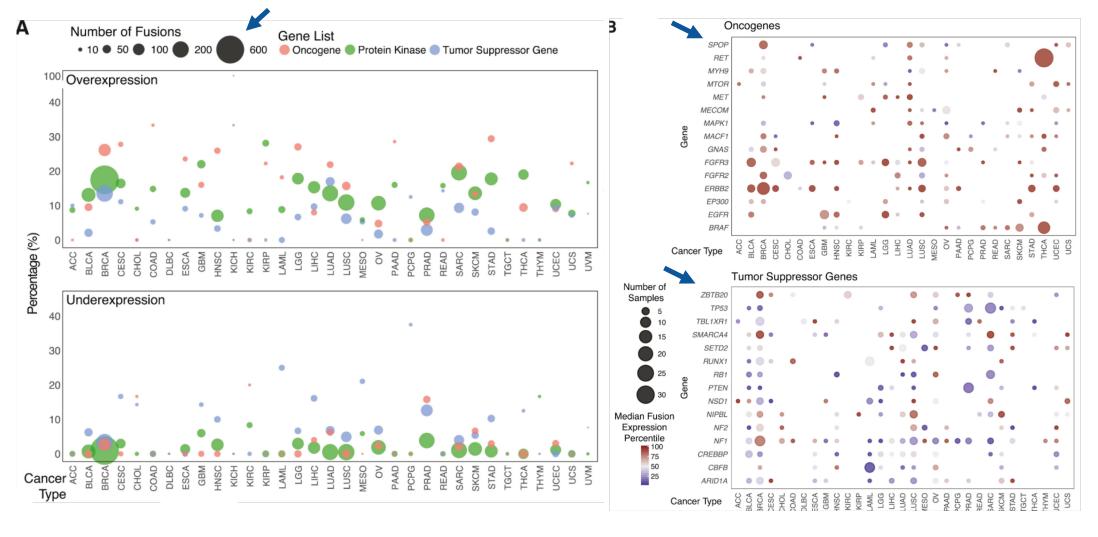
bit.ly/webinarfusion

HISTORY GENE **FUSIONS** CANCER

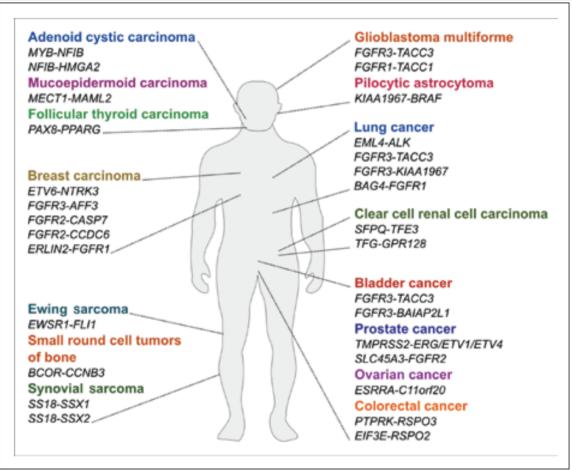

UTILITY OF GENE FUSIONS IN CANCER

Box 1. Summary points

- 1. Gene fusions are an integral component of the landscape of somatic aberrations in all cancers.
- 2. Recurrent 5' fusion genes are generally lineage- and/or cell-type specific.
- 3. Recurrent 3' fusion genes in epithelial cancers are usually kinases or transcription factors, similar to the situation in hematological and soft tissue cancers.
- 4. High-throughput sequencing enables systematic discovery of gene fusions with high sensitivity and precision.
- 5. High-throughput sequencing often identifies multiple gene fusions in individual samples, presenting a challenge to distinguish oncogenic "driver" from unimportant "passenger" aberrations.
- 6. Chimeric RNAs expressed independent of chromosomal rearrangements are frequently observed in cancer (and benign) tissues.
- 7. Functionally recurrent gene fusions provide clinically relevant molecular subclassifications of existing morphological categories of tumors.
- 8. Functionally recurrent gene fusions that are seen across tissue types define functionally distinct molecular subtypes of cancers.
- 9. Gene fusions represent personalized therapeutic targets and prognostic and diagnostic markers.



EXTENT OF GENE FUSIONS IN CANCER



EXTENT OF GENE FUSIONS IN CANCER

CANCER GENE FUSIONS IN THE CLINIC

	Alectinib	Apatinib	Brigatinib	Cabozantinib	Ceritinib	Crizotinib	Dabrafenib	Dasatinib	Entrectinib	Erlotinib	Gefitinib	Imatinib	Lapatinib	Larotrectinib	Lorlatinib	Nilotinib	Pazopanib	Ponatinib	Regorafenib	Sorafenib	Sunitinib	Vandetanib	Vemurafenib
ABL								Χ				Χ				Χ		Χ					
ALK	Χ		Χ		Χ	Χ			Χ						Χ								
AXL				Χ																			
BRAF							Χ												Χ	Χ			Χ
EGFR			Χ							Χ	Χ		Χ									Χ	
FGFR																		Χ	Χ			Χ	
FLT3				Χ														Χ		Χ	Χ		
HER2													Χ										
KIT		Χ		Χ				Χ				Χ				Χ	Χ	Χ	Χ	Χ	Χ		
MET				Χ		Χ																	
PDGFR		Χ						Χ				Χ				Χ	Χ	Χ	Χ	Χ	Χ		
RET	Χ	Χ		Χ														Χ	Χ	Χ	Χ	Χ	
ROS				Χ	Χ	Χ			Χ						Χ								
SRC		Χ						Χ										Χ				Χ	
TIE2				Χ														Χ	Χ			Χ	
TRK				Χ					Χ					Χ									
VEGFR		Χ		Χ													Χ	Χ	Χ	Χ	Χ	Χ	

Background – The Need

IDENTIFY AND ANNOTATE DISEASE DRIVERS

- Which patient variants are activating & what is the supporting evidence?
- What is the landscape of functional variants for a given gene or pathway?
- Which evidence-based genes should be included on an diagnostic panel?
- Which variants should I include on a disease-specific diagnostic assay?
- Which variants are targetable using precision therapies?

IDENTIFY AND ANNOTATE DISEASE DRIVERS

SUMMARY DATA

1-95

Fusion Partners per Input Gene

illumına[®]
TruSight[™] RNA
Fusion Panel

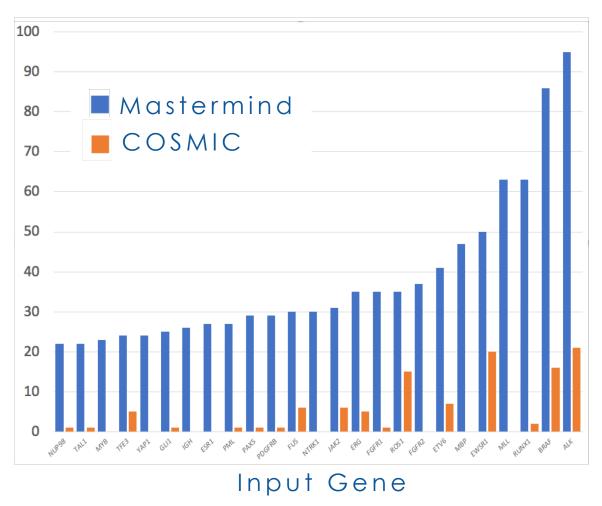
507

Total Number of Input Genes

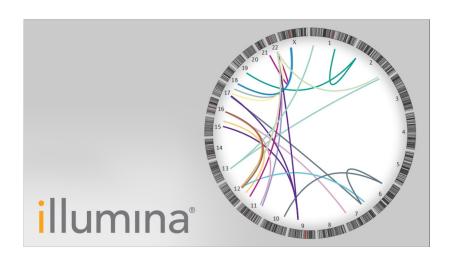
2,419

Characterized Gene Fusion Events

28,688

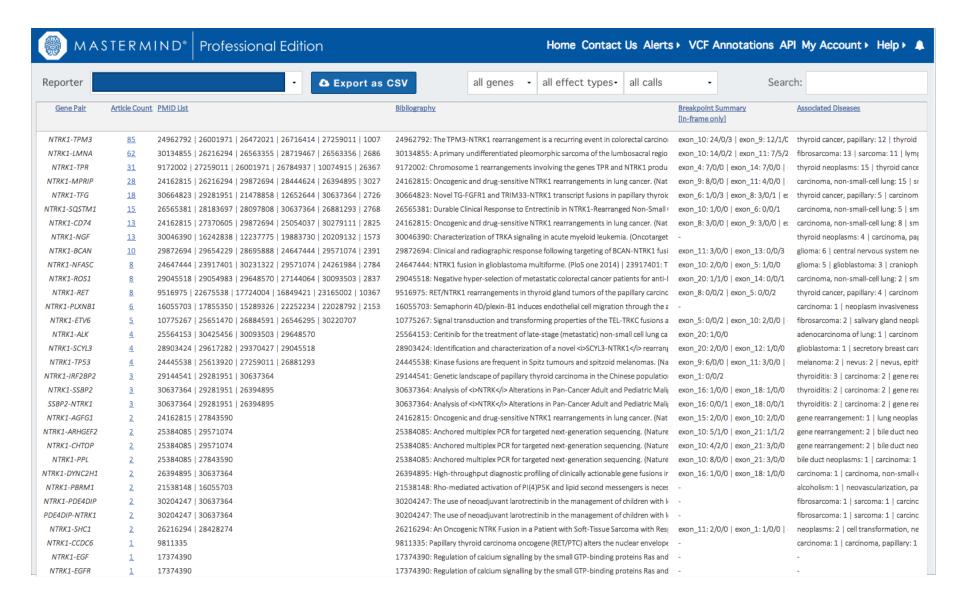

Articles Citing Fusion Pairs

SUMMARY DATA


nique Fusion Partners

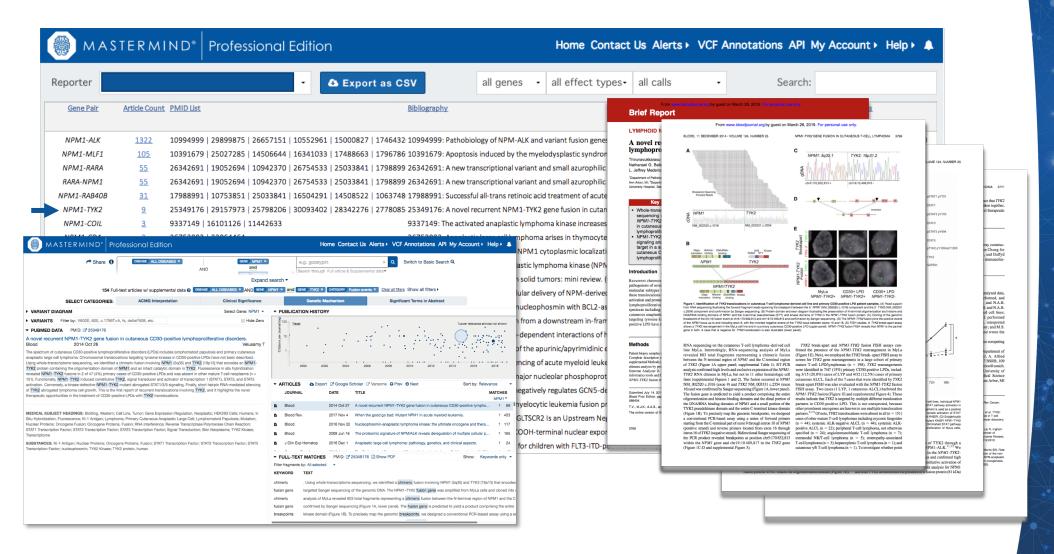
Genomenon's Approach

GENOMIC LANDSCAPING – GENE FUSIONS

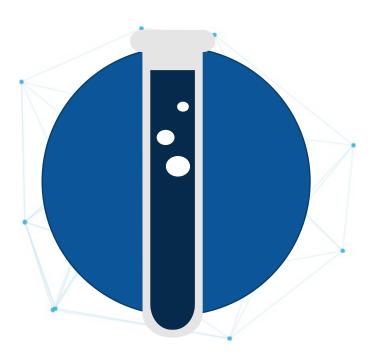


For 507 Illumina TruSight Fusion genes

- <u>Determine</u> all gene-gene fusions in the medical literature
- Assess the context of these co-mentions at the article- and sentence-levels
- <u>Prioritize</u> by number and strength of these data using internal machine learning techniques
- Annotate for disease, therapies, breakpoints
- Review to identify functional or clinically significant fusion events

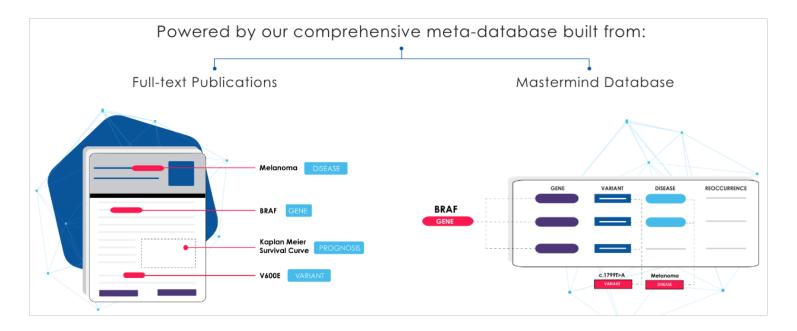


MASTERMIND REPORTER


MASTERMIND REPORTER

REPRESENTATIVE USE CASE DESCRIPTIONS

- Clinical reporting on patient RNAseq data
- Annotation of TCGA or other clinical database data
- Patient selection for clinical trials
- Uncovering novel fusion mechanisms to inform pharma R+D



MASTERMIND GENOMIC DATABASE

Comprehensive Index of the Genomic Literature

Annotated for Clinical and Functional Variants

30M

SCANNED

6.2M

TITLES/ABSTRACTS FULL-TEXT GENOMIC ARTICLES INDEXED

10K Diseases 20K Genes 4.1M Variants

COMPREHENSIVE GENOMIC UNDERSTANDING

Genome sciences

- A spatiotemporally resolved molecular atlas of all human cell types, throughout the lifecycle, and in both health and disease
- A comprehensive catalog of common genetic variants in which all human populations, as well as all classes of genetic variation, are well represented
- A "telomere-to-telomere" ungapped reference representation of the human genome
- A functionally validated catalog of human regulatory elements, annotated with the gene(s) that they regulate and the cellular, developmental, and/or disease contexts in which they are active

- The definitive identification of causal variants and genes for thousands of GWAS associations
- A comprehensive understanding of the genetic basis of all Mendelian disorders
- A basic understanding of the primary function(s) of every human gene
- Algorithms that can accurately predict the consequences of arbitrary genetic variants at the molecular/cellular level

Genomic medicine

- A database of whole genome sequences for at least 0.1% of living humans, integrated with electronic medical records and other phenotypes, and broadly accessible for research
- The routine use of exome or genome sequencing to diagnose the vast majority of suspected cases of Mendelian disease
- The routine use of genomewide genotyping and polygenic risk scores for common disease risk prediction

- The generation of catalogs of clinically meaningful functional scores for all possible SNVs in all "clinically actionable" genes
- The routine use of exome or genome sequencing to guide cancer treatment, including for patient-specific immunotherapy
- The successful exploitation of cell-free DNA for early (or at least earlier) detection of common cancers
- Algorithms that can accurately predict the consequences of arbitrary genetic variants at the organismal level

- Single Nucleotide Variants
- 2. Small Indels
- 3. Copy Number Variants
- 4. Fusion Events ←

GENOMENON®

POWERING EVIDENCE-BASED GENOMICS

Thank You

Sign Up for Mastermind Basic Edition and get 14 days of Mastermind Pro

bit.ly/webinarfusion